Cincinnati Cincinnati Children's

Further Delineation of 1p36 Deletion Syndrome in Adolescents and Adults

1p36 Deletion National Conference San Antonio, TX August 3, 2013

Ashley Brazil, MS

Cincinnati Cincinnati Children's

Acknowledgements

Robert Hopkin, MD Kevin Stanford, MPH Teresa Smolarek, PhD Ken Shirtcliff, 1p36 Deletion Support and Awareness Association All particpants!

Cincinnati Cincinnati Children's

Purpose

- · To begin to describe the natural progression of 1p36 deletion syndrome
- To further additional research opportunities for 1p36 deletion syndrome and address families' and clinicians' questions about the syndrome.

Purpose

Cincinnati

Cincinnati Children's

C Cincinnati Children's Cincinnati

Background

Cincinnati Cincinnati Children's

Background¹⁻⁴

- · Most common terminal deletion syndrome
- Incidence :1/5,000 1/10,000
- About 95% of deletions are de novo
- · First reported in 1981, first "true" case reported in 1993
- · Common facial characteristics:
 - del(1)(p36) - Straight eyebrows, deep-set eyes, pointed chin, flat nasal bride, long philtrum, etc.

Common Characteristics¹⁻⁶

- Central Nervous System
 - 50% 79% seizures
 - Brain malformations
 - Hypotonia, spasticity, contractures
- · Cardiovascular
 - 17% 31% cardiomyopathy
 - CHD
- GU
 - Renal anomalies

Cincinnati Children's Cincinnat

Common Characteristics¹⁻⁶

- Vision
 - 30% 67% strabismus
 - Myopia and hypermetropia
- Hearing
 - Up to 2/3 with hearing loss
- GI
 - 60% 70% gastroesophogeal reflux in infancy
 - Constipation, diarrhea, general discomfort, and ulcers

Cincinnati Cincinnati Cincinnati

Common Characteristics¹⁻⁸

- Speech and Communication
 Delays in speech development; almost universal
- Feeding and Toileting
 - 47% 77% of infants have difficulty feeding
- Mobility
 - Usually delayed
 - May achieve independent walking or be wheelchair dependent
- Behavioral
 - Ranges from happy temperament to autistic-like features

Cincinnati Children's Cincinnat

Additional Features

- Physical Development^{2,7}
 - Case reports of precocious puberty and delays in puberty
- Cancer⁹⁻¹¹
 - Few case reports on neuroblastoma in children with 1p36 deletion syndrome
 - Tumor suppressor genes located on the 1p36 region

Cincinnati Cincinnati Children's Cincinnati

Methods

Cincinnati Children's Cincinnati

Participants

- Primary caregivers of adolescents and adults with 1p36 deletion syndrome aged 12 or older
- Must have a confirmed diagnosis of 1p36 deletion syndrome
- · English as primary language
- Recruited through three online support groups and cohort of CCHMC patients
 - 1p36 Deletion Support and Awareness
 - UNIQUE
 - Chromosome Disorder Outreach, Inc.

Survey Development

- · Cross-sectional descriptive survey
- · 133 item questionnaire
 - 72 close-ended questions
 - 61 open-ended questions
- · Developed based on literature review and anticipated medical problems
- Administered electronically through REDCap[®] and via mail

Cincinnat Cincinnati Children's

Survey Measures

- · 12 sections of questions
- Demographic
- Medical history
- Central nervous system
- Hearing and vision
- Cardiovascular
- Physical abnormality
- Puberty
- Mobility
- Feeding and toileting
- Speech and communication
- Behavioral
- Cancer

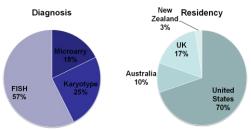
Cincinnat Cincinnati Children's

Results

Cincinnat Cincinnati Children's

Responses

- 50 surveys attempted completion
- · 38 filled out to completion
 - 28 females - 10 males
- 12 incomplete
 - 7 left blank
 - 1 did not meet age requirement
 - 2 filled out all but behavioral section; included in analysis
- · 40 surveys included in analysis


C Cincinnati Children's Cincinnati

Demographics: Males and Females

- · Female ages ranged 12 46 years old - Mean: 19.7 years old
- Male ages ranged from 13 34 years old - Mean: 19.2 years old
- · No statistical significance was found between the ages of males and females (chi sqaure, p=0.8738)

Cincinnati Cincinnati Children's

Demographics: Diagnosis and Residency

Medical History: GI and Renal Problems

	Males (n=11)	Females (n=29)	Total (n=40)
Constipation	27% (3)	45% (13)	40% (16)
Diarrhea	27% (3)	24% (7)	25% (10)
Kidney Infections	27% (3)	21% (6 out of 28)	23% (9 out of 39)
GE Reflux	27% (3)	17% (5)	20% (8)
Abdominal Pain	9% (1)	24% (7)	20% (8)
Ulcers	9% (1)	3% (1)	5% (2)

Cincinnati Cincinnati

Central Nervous System

	Males (n=11)	Females (n=29)	Total (n=40)
Hx of seizures	64% (7)	83% (24)	78% (31)
Currently HAS seizures	43% (3 out of 7)	42% (10 out of 24)	42% (out of 31)
Currently DOES NOT have seizures	57% (4 out of 7)	58% (14 out of 24)	58% (out of 31)
Currently hypotonic	55% (6)	69% (20)	65% (26)
Currently spastic	36% (4)	52% (15)	48% (19)
Hx of contractures	25% (2 out of 8)	31% (8 out of 26)	29% (10 out of 34)
Brain anomaly	27% (3)	14% (4)	18% (7)

Cincinnati Children's	Cincinnat
--------------------------	-----------

Hearing Problems

	Males (n=11)	Females (n=29)	Total (n=40)
No HL	45% (5)	59% (17)	55% (22)
Conductive	18% (2)	13% (5)	18% (7)
Sensorineural	9% (1)	14% (4)	13% (5)
Mixed	18% (2)	7% (2)	8% (3)
Other	9% (1)	4% (1)	8% (3)

Vision Problems

	Males (n=11)	Females (n=29)	Total (n=40)
Myopia	55% (6)	31% (9)	38% (15)
Strabismus	27% (3)	38% (11)	35% (14)
Hypermetropia	9% (1)	10% (3)	10% (4)
Other	0% (0)	31% (9)	23% (9)
No vision problems	27% (3)	17% (5)	20% (7)

Cincinnati

Congenital Heart Defects

	Males (n=6)	Females (n=14)	Total (n=20)
VSD	2	5	7
PDA	1	4	5
Murmur	1	3	4
Ebstein's anomaly	0	2	2
PFO	0	1	1
ASD	1	0	1
Narrow aortic arch	1	0	1
Bicuspid aortic valve	1	0	1
Tricuspid aortic valve	0	1	1
Tetralogy of Fallot	0	1	1
Transient myocardial dysfunction	0	1	1

Cincinnati Children's Cincinnati

Acquired/Persistent Cardiovascular Disease

	Males (n=3)	Females (n=4)	Total (n=7)
Cardiomyopathy	2	1	3
Dialated aortic and pulmonary root	0	1	1
LVNC and CHF	0	1	1
Unspecified	1	1	2

Unspecified: "new hole in heart" and "left ventricle"

Cincinnati Children's Cincinnati	
-------------------------------------	--

Physical Development

Tanner Stage	Males (n=11)	Females (n=28)	Total (n=39)
Ш	9% (1)	0	
Ш	0	11% (3)	8% (3)
IV	0	21% (6)	15% (6)
V	73% (8)	64% (18)	67% (26)
None	9% (1)	0	3% (1)
Onset of Menses	N/A	11.3 years old	
Atypical Development	55% (6)	17% (5)	28% (11)

Cancer/Tumors

- 0 out of 40 respondents reported a tumor or cancer diagnoses among the surveyed population
- However, this does not establish low risk for developing cancer
- Primary care physicians should be aware of a potentially increased risk

Cincinnati Children's Cincinnati

Ability to Achieve Independent Mobility

	Males (n=11)	Females (n=29)	Total (n=40)
Sit	91% (10)	100% (29)	98% (39)
Walk	82% (9)	79% (23)	80% (32)
Crawl	9% (1)	17% (5)	15% (6)
"Bottom-Shuffle"	9% (1)	17% (5)	15% (6)
Crawl and "bottom- shuffle"	27% (3)	14% (4)	18% (7)
No wheelchair assistance	64% (7)	62% (18)	63% (25)
Used wheelchair	18% (2)	34% (10)	30% (12)

Cincinnati Children's Cincinnati

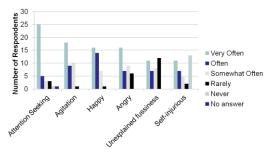
Ability to Feed Independently

	Males (n=11)	Females (n=29)	Total (n=40)
Never needed tube	73% (8)	79% (23)	78% (31)
Ever needed G-tube	27% (3)	17% (5)	20% (8)
Ever needed NG-tube	0	3% (1)	3% (1)
Currently no tube	81% (9)	90% (26)	88% (35)
Currently G-tube	18% (2)	7% (2)	10% (4)
Majority of nutrition orally	91% (10)	97% (28)	95% (38)
Hold cup or spoon	10 out of 10	28 out of 28	
Feed themselves	90% (9 out of 10)	85% (23 out of 27)	86% (32 out of 37)

Cincinnati Children's Cincinnati

Toileting

	Males (n=11)	Females (n=29)	Total (n=40)
Stool and urine	45% (5)	41% (12)	43% (17)
Urine only	9% (1)	7% (2)	8% (3)
Not toilet trained	45% (5)	48% (14)	48% (19)
Accidents	33% (2 out of 6)	43% (6 out of 14)	40% (8 out of 20)


Cincinnati Children's Cincinnati

Speech and Communication

	Males (n=11)	Females (n=28)	Total (n=39)
Verbal	37% (4)	46% (13)	44% (17)
10 words or less	0	8% (1 out of 13)	6% (1 out of 17)
11-50 words	25% (1 out of 4)	8% (1 out of 13)	12% (2 out of 17)
51-100 words	0	15% (2 out of 13)	12% (2 out of 17)
Over 100 words	75% (3 out of 4)	69% (9 out of 13)	71% (12 out of 17)
Speak sentences	3 out of 4	13 out of 13	
Imitate sounds	73% (8)	79% (22)	77% (30)
Exclusive use of sign language	55% (6)	30% (8 out of 27)	37% (14 out of 37)
Specific Speech problem	36% (4)	43% (12)	41% (16)

Cincinnati Children's Cincinnati

Behavioral

Implications/Conclusions

Cincinnati Children's Cincinnati

Implications and Conclusions

- · Corroborated some of same existing data
 - Seizures are a prominent medical problem and can persist into adulthood
 - Vision problems also are very common
- Elucidated new medical problems
 - Hypotonia may persist into adulthood
 - Acquired cardiovascular manifestations

Cincinnati Children's Cincinnati

Implications and Conclusions

- · Many individuals are mobile
- · Most individuals are able to feed themselves
- Verbal and non-verbal communication occur frequently
- · Some behavioral concerns still exist

Cincinnati Children's Cincinnati

Implications and Conclusions

- Proper medical care and support (therapies, etc.) is imperative
- Individuals appear to make significant developmental progress
- Ability to achieve a level of independence not previously documented

Cincinnati Children's Cincinnati

Future Research

Cincinnati Children's Cincinnati

Future Research

- Continuing to characterize 1p36 deletion syndrome in adolescents and adults
- Evaluating 1p36 deletion syndrome and obesity in adulthood
- · Formal speech evaluations

Questions?

Cincinnati Cincinnati Children's

Thank you!!!!!

References

- Ketterences
 Gajecka M, Mackay KL, Shaffer, LG. 2007. Monosomy 1p36 deletion syndrome. Am J Med Genet 146:236-356.
 Shapina, SK, et al. Chromosome 1p36 deletions: the clinical phenotype and molecular characterization of a common newly delineated syndrome. Am J Hum Genet, 1967. 61(5):42-36.
 Heilstack LM, et al. Physical mod / 1p36, Blochemic of brankpoints in monosomy 1p36, and clinical characterization of a common newly delineated syndrome. Mark 1967. 61(5):42-36.
 Heilstack LM, et al. Physical mod / 1p36, Blochemic of brankpoints in monosomy 1p36, and clinical characterization of a common newly delineated syndrome. Mark 1967. 61(5):42-36.
 Heilstack LM, et al. Physical characterization of a common newly delineated syndrome. Sci. 1967. 61(5):42-36.
 Heilstack LM, et al. Physical characterization of the phenotype and common Cause of Developmental public work dental Retradation. Pediatrics. 2009. 12(12):404-410.
 Kright-Jones E, et al. Neurodevelopmental public and Mental Retradation. Pediatrics. 2009. 12(12):404-410.
 D'Angelo, E, et al. A. Neurodevelopmental public and Mental Retradation. Pediatrics. 2009. 12(12):404-410.
 D'Angelo, E, et al. A. Neurodevelopmental public and Mental Retradation. Pediatrics. 2009. 12(12):404-410.
 D'Angelo, E, et al. A. Neurodevelopmental public and mental methore and mapping of a critical region for obesity and hyperphagia. Am J. Med Genet A. 2010. 152A(1):102-10.
 White, P. et al. A. Region of consistent deletion and neuroblastoma magning of a critical region for obesity and hyperphagia. 1965. 20(2):2552-43.
 Blogel, J. et al. Constitutioned in J p56 deletion in a achieve min neuroblastoma. Am J Hum Genet, 1983. 2010.
 Laurey, G., et al. Constitutioned in analocation (f1:17)[p36;q12-21] in a asient with neurohadatesem Common Phase. 2007. 2007. 2007. 2007. 2007. 2007. 2007. 2007. 2007. 2007. 2007. 2007. 2007. 20

- Laureys, G, et al. Constitutional translocation t(1;17)(p36;q12-21) in a patient with neuroblastoma. Genes Chromosomes Cancer, 1990. 2(3):252-4.